1) Which one of the following pairs cannot be mixed together to form a buffer solution?
A) HONH₂, HONH₃Cl B) NaCl, HCl C) RbOH, HF D) KOH, HNO₂ E) H₂SO₃, KHSO₃

2) Of the following solutions, which has the greatest buffering capacity?
A) 0.821 M HF and 0.217 M NaF B) 0.821 M HF and 0.909 M NaF C) 0.100 M HF and 0.217 M NaF D) 0.121 M HF and 0.667 M NaF

3) The addition of hydrochloric acid and _________ to water can produce a buffer solution.
A) HC₆H₅O B) NaOH C) NH₃ D) HNO₃ E) NaNO₃

4) The addition of sodium hydroxide and _________ to water produces a buffer solution.
A) HCl B) NaC₂H₃O₂ C) NaF D) NH₃ E) none of the above

5) A 25.0 mL sample of a solution of an unknown compound is titrated with a 0.115 M NaOH solution. The titration curve above was obtained. The unknown compound is
A) a strong acid B) a strong base C) a weak acid D) a weak base E) neither an acid nor a base
Consider the following table of K_{sp} values.

<table>
<thead>
<tr>
<th>Name</th>
<th>Formula</th>
<th>K_{sp}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cadmium carbonate</td>
<td>CdCO₃</td>
<td>5.2 × 10⁻¹²</td>
</tr>
<tr>
<td>Cadmium hydroxide</td>
<td>Cd(OH)₂</td>
<td>2.5 × 10⁻¹⁴</td>
</tr>
<tr>
<td>Calcium fluoride</td>
<td>CaF₂</td>
<td>3.9 × 10⁻¹¹</td>
</tr>
<tr>
<td>Silver iodide</td>
<td>AgI</td>
<td>8.3 × 10⁻¹⁷</td>
</tr>
<tr>
<td>Zinc carbonate</td>
<td>ZnCO₃</td>
<td>1.4 × 10⁻¹¹</td>
</tr>
</tbody>
</table>

6) Which compound listed below has the greatest molar solubility in water?
A) CdCO₃ B) Cd(OH)₂ C) AgI D) CaF₂ E) ZnCO₃
7) In which of the following aqueous solutions would you expect AgCl to have the lowest solubility?
A) pure water B) 0.020 M BaCl₂ C) 0.015 NaCl D) 0.020 AgNO₃ E) 0.020 KCl

8) The K_a of benzoic acid is 6.30×10^{-5}. The pH of a buffer prepared by combining 50.0 mL of 1.00 M potassium benzoate and 50.0 mL of 1.00 M benzoic acid is __________.
A) 1.705 B) 0.851 C) 3.406 D) 4.201 E) 2.383

9) Calculate the pH of a solution prepared by dissolving 0.150 mol of acetic acid and 0.300 mol of sodium acetate in water sufficient to yield 1.00 L of solution. The K_a of acetic acid is 1.76×10^{-5}.
A) 2.516 B) 3.892 C) 4.502 D) 10.158 E) 5.056

10) The pH of a solution prepared by dissolving 0.350 mol of solid methylamine hydrochloride (CH₃NH₃Cl) in 1.00 L of 1.10 M methylamine (CH₃NH₂) is __________. The K_b for methylamine is 4.40×10^{-4}.
A) 1.66 B) 2.86 C) 10.28 D) 11.14 E) 10.61

11) A 25.0 mL sample of 0.723 M HClO₄ is titrated with a 0.27 M KOH solution. The H_3O^+ concentration after the addition of 80.0 mL of KOH is __________ M.
A) 0.4 B) 1×10^{-7} C) 0.7 D) 3×10^{-13} E) 4×10^{-2}

12) The pH of a solution prepared by mixing 50.0 mL of 0.125 M KOH and 50.0 mL of 0.125 M HCl is __________. A) 6.29 B) 7.00 C) 8.11 D) 5.78 E) 0.00

13) The concentration of iodide ions in a saturated solution of lead (II) iodide is __________ M. The solubility product constant of PbI₂ is 1.4×10^{-8}.
A) 3.8×10^{-4} B) 3.0×10^{-3} C) 1.5×10^{-3} D) 3.5×10^{-9} E) 1.4×10^{-8}

14) The solubility of lead (II) chloride (PbCl₂) is 1.6×10^{-2} M. What is the K_{sp} of PbCl₂? A) 5.0×10^{-4} B) 4.1×10^{-6} C) 3.1×10^{-7} D) 1.6×10^{-5} E) 1.6×10^{-2}

15 Calculate the maximum concentration (in M) of silver ions (Ag⁺) in a solution that contains 0.025 M of CO₃²⁻. The K_{sp} of Ag₂CO₃ is 8.1×10^{-12}.
A) 1.8×10^{-5} B) 1.4×10^{-6} C) 2.8×10^{-6} D) 3.2×10^{-10} E) 8.1×10^{-12}

16) Calculate the percent ionization of formic acid (HCO₂H) in a solution that is 0.219 M in formic acid. The K_a of formic acid is 1.77×10^{-4}.
A) 3.94×10^{-5} B) 0.0180 C) 2.84 D) 0.280 E) 12.2
17) Calculate the pH of a solution that is 0.210 M in nitrous acid (HNO₂) and 0.290 M in potassium nitrite (KNO₂). The acid dissociation constant of nitrous acid is 4.50×10^{-4}.
A) 3.487 B) 3.210 C) 13.86 D) 10.51 E) 4.562

18) Consider a solution containing 0.100 M fluoride ions and 0.126 M hydrogen fluoride. The concentration of fluoride ions after the addition of 4.00 mL of 0.0100 M HCl to 25.0 mL of this solution is _______ M. (DIFFICULT!)
A) 0.0862 B) 0.0876 C) 0.0980 D) 0.0848 E) 0.00253

19) Calculate the pH of a solution prepared by dissolving 0.850 mol of NH₃ and 0.350 mol of NH₄Cl in water sufficient to yield 1.00 L of solution. The K_b of ammonia is 1.77×10^{-5}.
A) 5.137 B) 4.367 C) 9.633 D) 8.781 E) 8.863

20) A 25.0 mL sample of 0.150 M hydrazoic acid is titrated with a 0.150 M NaOH solution. What is the pH at the equivalence point? The K_a of hydrazoic acid is 4.50×10^{-4}.
A) 11.72 B) 9.28 C) 4.72 D) 7.00 E) 8.80

21) A 25.0-mL sample of 0.150 M butanoic acid is titrated with a 0.150 M NaOH solution. What is the pH before any base is added? The K_a of butanoic acid is 1.5×10^{-5}.
A) 2.83 B) 1.5×10^{-3}
C) 4.82 D) 4.00
E) 1.0×10^4

22) A 25.0 mL sample of 0.150 M hypochlorous acid is titrated with a 0.150 M NaOH solution. What is the pH after 26.0 mL of base is added? The K_a of hypochlorous acid is 3.0×10^{-8}.
A) 2.54 B) 11.47
C) 7.00 D) 7.51
E) 7.54

23) A 25.0-mL sample of 0.150 M hydrazoic acid is titrated with a 0.150 M NaOH solution. What is the pH after 13.3 mL of base is added? The K_a of hydrazoic acid is 1.9×10^{-5}.
A) 4.45 B) 1.34
C) 3.03 D) 4.78
E) 4.66

BBCEC DBDED DBBDA CADCE ABD