Exam
Name \qquad

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

1) Nitrogen dioxide decomposes to nitric oxide and oxygen via the reaction:

$$
2 \mathrm{NO}_{2} \rightarrow 2 \mathrm{NO}+\mathrm{O}_{2}
$$

In a particular experiment at $300^{\circ} \mathrm{C},\left[\mathrm{NO}_{2}\right]$ drops from 0.0100 to 0.00650 M in 100 s . The rate of disappearance of NO_{2} for this period is \qquad M / s.
A) 0.35
B) 3.5×10^{-3}
C) 3.5×10^{-5}
D) 1.8×10^{-3}
E) 7.0×10^{-3}
2) At elevated temperatures, dinitrogen pentoxide decomposes to nitrogen dioxide and oxygen: $2 \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{~g}) \rightarrow 4 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$
When the rate of formation of O_{2} is $2.2 \times 10^{-4} \mathrm{M} / \mathrm{s}$, the rate of decomposition of $\mathrm{N}_{2} \mathrm{O}_{5}$ is
\qquad M/s.
A) 1.1×10^{-4}
B) 4.4×10^{-4}
C) 5.5×10^{-4}
D) 2.2×10^{-4}
E) 2.8×10^{-4}
3) The rate law of a reaction is rate $=k[D][X]$. The units of the rate constant are \qquad .
1)
) \qquad
2) \qquad
3) \qquad
A) $\mathrm{L} \mathrm{mol}^{-1} \mathrm{~S}_{\mathrm{S}}-1$
B) $\mathrm{L}^{2} \mathrm{~mol}^{-2} \mathrm{~s}^{-1}$
C) $\mathrm{mol} \mathrm{L}-1_{\mathrm{S}-2}$
D) $\mathrm{mol}^{2} \mathrm{~L}^{-2} \mathrm{~S}^{-1}$
E) $\mathrm{mol} \mathrm{L}-\mathrm{L}^{-1}$

The data in the table below were obtained for the reaction:
$A+B \rightarrow P$

Experiment Number	$[\mathrm{A}](\mathrm{M})$	[B] (M)	Initial Rate $(\mathrm{M} / \mathrm{s})$
1	0.273	0.763	2.83
2	0.273	1.526	2.83
3	0.819	0.763	25.47

4) The rate law for this reaction is rate $=$ \qquad .
5) \qquad
A) $\mathrm{k}[\mathrm{P}]$
B) $k[A]^{2}[B]$
C) $k[A][B]$
D) $k[A]^{2}[B]^{2}$
E) $k[A]^{2}$
6) The magnitude of the rate constant is \qquad .
A) 42.0
B) 38.0
C) 0.278
D) 13.2
E) 2.21
7) The reaction
8)
9) \qquad
\qquad

$$
2 \mathrm{NO}_{2} \rightarrow 2 \mathrm{NO}+\mathrm{O}_{2}
$$

follows second- order kinetics. At $300^{\circ} \mathrm{C},\left[\mathrm{NO}_{2}\right]$ drops from 0.0100 M to 0.00650 M in 100.0 s . The rate constant for the reaction is \qquad $\mathrm{M}^{-1} \mathrm{~S}^{-1}$.
A) 0.54
B) 0.65
C) 0.81
D) 1.2
E) 0.096
7) Which one of the following graphs shows the correct relationship between concentration and time \qquad for a reaction that is second order in [A]?
A)

B)

C)

D)

E)

The reaction $\mathrm{A} \rightarrow \mathrm{B}$ is first order in $[\mathrm{A}]$. Consider the following data.

time (s)	$[\mathrm{A}](\mathrm{M})$
0.0	1.60
10.0	0.40
20.0	0.10

8) The rate constant for this reaction is \qquad s^{-1}.
A) 3.0
B) 3.1×10^{-3}
C) 0.013
D) 0.030
E) 0.14
9) The half-life of this reaction is \qquad s.
A) 0.97
B) 3.0
C) 5.0
D) 0.14
E) 7.1
10) A compound decomposes by a first- order process. If 25.0% of the compound decomposes in 60.0 \qquad minutes, the half-life of the compound is \qquad .
11) \qquad
A) 198 minutes
B) 145 minutes
C) 180 minutes
D) 120 minutes
E) 65 minutes

The reaction $\mathrm{A} \rightarrow \mathrm{B}$ is first order in [A]. Consider the following data.

Time (s)	0.0	5.0	10.0	15.0	20.0
[A] (M)	0.20	0.14	0.10	0.071	0.050

11) The rate constant for this reaction is \qquad s^{-1}.
12) \qquad
A) 3.0×10^{-2}
B) 14
C) 4.0×10^{2}
D) 0.46
E) 6.9×10^{-2}
13) The concentration of A is \qquad M after 40.0 s .
A) 0.17
B) 3.5×10^{-4}
C) 1.2
D) 1.3×10^{-2}
E) 0.025
14) At elevated temperatures, methylisonitrile $\left(\mathrm{CH}_{3} \mathrm{NC}\right)$ isomerizes to acetonitrile $\left(\mathrm{CH}_{3} \mathrm{CN}\right)$:

$$
\mathrm{CH}_{3} \mathrm{NC}(\mathrm{~g}) \rightarrow \mathrm{CH}_{3} \mathrm{CN}(\mathrm{~g})
$$

The reaction is first order in methylisonitrile. The attached graph shows data for the reaction obtained at $198.9^{\circ} \mathrm{C}$.

The rate constant for the reaction is \qquad s^{-1}.
A) $+1.9 \times 10^{4}$
B) +6.2
C) -1.9×10^{4}
D) -5.2×10^{-5}
E) $+5.2 \times 10^{-5}$
14) A reaction was found to be third order in A. Increasing the concentration of A by a factor of 3 will
14) \qquad cause the reaction rate to \qquad -.
A) increase by a factor of 27
B) increase by a factor of 9
C) decrease by a factor of the cube root of 3
D) triple
E) remain constant

The data in the table below were obtained for the reaction:
$A+B \rightarrow P$

Experiment Number	$[\mathrm{A}](\mathrm{M})$	$[\mathrm{B}](\mathrm{M})$	Initial Rate $(\mathrm{M} / \mathrm{s})$
1	0.273	0.763	2.83
2	0.273	1.526	2.83
3	0.819	0.763	25.47

15) The order of the reaction in A is \qquad -
C) 3
D) 4
E) 0
16) The order of the reaction in B is \qquad .
A) 1
B) 2
C) 3
D) 4
E) 0
17) The overall order of the reaction is \qquad .
A) 1
B) 2
C) 3
D) 4
E) 0
18) A possible mechanism for the overall reaction
19) \qquad
20) \qquad
21) \qquad
22) \qquad

$$
\mathrm{Br}_{2}(\mathrm{~g})+2 \mathrm{NO}(\mathrm{~g}) \rightarrow 2 \mathrm{NOBr}(\mathrm{~g})
$$

is

$$
\begin{aligned}
& \mathrm{NO}(\mathrm{~g})+\mathrm{Br}_{2}(\mathrm{~g}) \underset{\mathrm{k}-1}{\stackrel{\mathrm{k}_{1}}{\rightleftharpoons}} \mathrm{NOBr}_{2}(\mathrm{~g}) \\
& \mathrm{NOBr}_{2}(\mathrm{~g})+\mathrm{NO}(\mathrm{~g}) \xrightarrow{\mathrm{k}_{2}} 2 \mathrm{NOBr}^{\text {(fast) }}
\end{aligned}
$$

The rate law for formation of NOBr based on this mechanism is rate $=$ \qquad _.
A) $k_{1}[\mathrm{NO}]^{1 / 2}$
B) $\left(\mathrm{k}_{1} \mathrm{k}^{-1}\right)^{2}[\mathrm{NO}]^{2}$
C) $\left(\mathrm{k}_{2} \mathrm{k}_{1} / \mathrm{k}^{-1}\right)[\mathrm{NO}]^{2}\left[\mathrm{Br}_{2}\right]$
D) $\mathrm{k}_{1}\left[\mathrm{Br}_{2}\right]^{1 / 2}$
E) $\left(\mathrm{k}_{2} \mathrm{k}_{1} \not k^{-1}\right)[\mathrm{NO}]\left[\mathrm{Br}_{2}\right]^{2}$

