MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

1)

 $2NO_2 \rightarrow 2NO + O_2$

In a particular experiment at 300 °C, [NO₂] drops from 0.0100 to 0.00650 M in 100 s. The rate of disappearance of NO₂ for this period is _____ M/s.

- A) 0.35

1) Nitrogen dioxide decomposes to nitric oxide and oxygen via the reaction:

- B) 3.5×10^{-3} C) 3.5×10^{-5} D) 1.8×10^{-3} E) 7.0×10^{-3}
- 2) At elevated temperatures, dinitrogen pentoxide decomposes to nitrogen dioxide and oxygen: $2N_2O_5(g) \rightarrow 4NO_2(g) + O_2(g)$

2)

When the rate of formation of O_2 is 2.2×10^{-4} M/s, the rate of decomposition of N_2O_5 is _____ M/s.

- A) 1.1×10^{-4}

- B) 4.4×10^{-4} C) 5.5×10^{-4} D) 2.2×10^{-4} E) 2.8×10^{-4}
- 3) The rate law of a reaction is rate = k[D][X]. The units of the rate constant are ______.

- A) L mol $^{-1}$ s $^{-1}$
- B) $L^2 mol^{-2}s^{-1}$
- C) mol $L^{-1}s_{-2}$
- D) mol² L-2_S-1
- E) mol L-1_S-1

The data in the table below were obtained for the reaction:

$$A + B \rightarrow P$$

Experiment			Initial Rate
Number	[A] (M)	[B] (M)	(M/s)
1	0.273	0.763	2.83
2	0.273	1.526	2.83
3	0.819	0.763	25.47

4) The rate law for this reaction is rate = ____

- A) k[P]
- B) k[A]²[B]
- C) k[A][B]
- D) k[A]²[B]²
- E) k[A]²

- 5) The magnitude of the rate constant is ____
 - A) 42.0
- B) 38.0
- C) 0.278
- D) 13.2
- E) 2.21

6) The reaction

$$2\mathsf{NO}_2 \ \rightarrow \ 2\mathsf{NO} \ + \ \mathsf{O}_2$$

follows second-order kinetics. At 300 °C, [NO₂] drops from 0.0100 M to 0.00650 M in 100.0 s. The rate constant for the reaction is _____M-1s-1.

- A) 0.54
- B) 0.65
- C) 0.81
- D) 1.2
- E) 0.096

A)

B)

C)

D)

E)

The reaction $A \rightarrow B$ is first order in [A]. Consider the following data.

time (s)	[A] (M)
0.0	1.60
10.0	0.40
20.0	0.10

- 8) The rate constant for this reaction is ______ s⁻¹.
 - A) 3.0
- B) 3.1×10^{-3}
 - C) 0.013
- D) 0.030
- E) 0.14
- 8) _____

- 9) The half-life of this reaction is _____s.
 - A) 0.97
- B) 3.0
- C) 5.0
- D) 0.14
- E) 7.1
- 9) _____
- 10) A compound decomposes by a first-order process. If 25.0% of the compound decomposes in 60.0 minutes, the half-life of the compound is ______.
- 10) ____

- A) 198 minutes
- B) 145 minutes
- C) 180 minutes
- D) 120 minutes
- E) 65 minutes

The reaction $A \rightarrow B$ is first order in [A]. Consider the following data.

Time (s)	0.0	5.0	10.0	15.0	20.0
[A] (M)	0.20	0.14	0.10	0.071	0.050

11) The rate constant for this reaction is _____ s-1.

11)

- A) 3.0×10^{-2}
- B) 14
- C) 4.0×10^2
- D) 0.46
- E) 6.9×10^{-2}

12) The concentration of A is _____ M after 40.0 s.

12)

- A) 0.17
- B) 3.5×10^{-4}
- C) 1.2
- D) 1.3 × 10⁻²
- E) 0.025
- 13) At elevated temperatures, methylisonitrile (CH₃NC) isomerizes to acetonitrile (CH₃CN):
- 13)

$$CH_3NC(g) \rightarrow CH_3CN(g)$$

The reaction is first order in methylisonitrile. The attached graph shows data for the reaction obtained at 198.9 °C.

The rate constant for the reaction is $__________s^{-1}$.

- A) $+1.9 \times 10^4$
- B) +6.2
- C) -1.9×10^4
- D) -5.2×10^{-5}
- E) $+5.2 \times 10^{-5}$
- 14) A reaction was found to be third order in A. Increasing the concentration of A by a factor of 3 will cause the reaction rate to ______.
 - A) increase by a factor of 27
 - B) increase by a factor of 9
 - C) decrease by a factor of the cube root of 3
 - D) triple
 - E) remain constant

The data in the table below were obtained for the reaction:

$$A + B \rightarrow P$$

Experiment			Initial Rate
Number	[A] (M)	[B] (M)	(M/s)
1	0.273	0.763	2.83
2	0.273	1.526	2.83
3	0.819	0.763	25.47

- 15) The order of the reaction in A is ______.
 - A) 1
- B) 2
- C) 3
- D) 4
- E) 0
- 15) _____

- 16) The order of the reaction in B is ______.
 - A) 1
- B) 2
- C) 3
- D) 4
- E) 0
- 16) _____

- 17) The overall order of the reaction is _____
 - A) 1
- B) 2

 $Br_2(g) + 2NO(g) \rightarrow 2NOBr(g)$

- C) 3
- D) 4
- E) 0
- 17) _____

18) A possible mechanism for the overall reaction

is

NO (g) + Br₂ (g)
$$\underset{k=1}{\overset{k_1}{\rightleftharpoons}}$$
 NOBr₂ (g) (fast)

$$NOBr_2(g) + NO(g) \xrightarrow{k_2} 2NOBr$$
 (slow)

The rate law for formation of NOBr based on this mechanism is rate = _____.

- A) k₁[NO]^{1/2}
- B) $(k_1/k^{-1})^2[NO]^2$
- C) $(k_2k_1/k^{-1})[NO]^2[Br_2]$
- D) k₁[Br₂]^{1/2}
- E) $(k_2k_1/k^{-1})[NO][Br_2]^2$