AP Chemistry. Test on Aqueous Equilibrium.
Name \qquad NO CALCULATORS ON THIS PART OF THE EXAM!
Questions 1 to 3 are based on the following 3 acids and their Ka's

$$
\mathrm{HA}, \mathrm{Ka}=1.0 \times 10^{-6} \quad \mathrm{HX} \quad \mathrm{Ka}=4.0 \times 10^{-8} \quad \mathrm{HZ} \quad \mathrm{Ka}=1.0 \times 10^{-10}
$$

\qquad 1. The pH of a 1.0 molar solution of HA is
A) 0
B) 3
C) 6
D) 8
\qquad 2. What is the $\left[\mathrm{H}^{+}\right]$in a solution containing 1.0 mole of HX and 2.0 mol of NaX
in 500 mL of solution?
A) 2.0×10^{-8}
B) 4.0×10^{-8}
C) 8.0×10^{-8}
D) 1.0×10^{-8}
\qquad 3. Which 0.100 molar solution would have the highest pH ?
A) NaA
B) NaX
C) KZ
D) HZ
\qquad 4. Which of the following anions has the weakest conjugate acid?
A) O^{2-}
B) OH^{-}
C) Cl
D) HCO_{3}
\qquad 5. In an aqueous solution with a pH of 10.50 at 25° the molar concentration of OH^{-}is approximately \quad A) $3.2 \times 10^{-14} \mathrm{M} \quad$ B) $3.2 \times 10^{-4} \mathrm{M}$
C) 0.25 M
D) $3.2 \times 10^{10} \mathrm{M}$

Choices: A) A solution with a pH less than 7 that is not a buffer
B) A solution with a pH less than 7 that is a buffer
C) A solution with a pH of 7
D) A solution with a pH greater than 7 that is not a buffer
E) A solution with a pH greater than 7 that is a buffer.

Note: The Ka of acetic acid is 1.8×10^{-5}, the Ka of HBrO is 2.5×10^{-9}, and the K_{b} of NH_{3} is 1.8×10^{-5}
\qquad 6. 0.10 mole of NH_{3} is mixed with 0.10 mole of NH Cl in 1.0 L of solution
\qquad 7. 0.10 mole of NaBrO is dissolved in 250 mL of solutioni
\qquad 8. 50.0 mL of 0.20 molar HBrO is mixed with 50.0 mL of 0.10 molar NaOH
\qquad 9. 0.50 mole of $\mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ is dissolved in 250 mL of solution
\qquad 10. 50.0 mL of $0.50 \mathrm{M} \mathrm{HCl}^{2}$ is added to 100.0 mL of $0.50 \mathrm{M} \mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$
\qquad 11. 50.0 mL of 0.50 M HCl is added to 100 mL of 0.25 M KOH .
\qquad 12. What is the $[\mathrm{H}]$ in an aqueous solution at $25^{\circ} \mathrm{C}$ that has an $[\mathrm{OH}]$ of
2.0×10^{-5} ?
A) 2.0×10^{-5}
B) 5.0×10^{-9}
C) $2.0 \times 10^{-}$
D) 5.0×10^{-10}
13. In the Bronsted-Lowry reaction $\mathrm{HNO}_{s}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\ell) \rightarrow \mathrm{H}_{3} \mathrm{O}(\mathrm{aq})+\mathrm{NO}_{i}^{-}(\mathrm{aq})$ the strongest acid and strongest base respectively are
A) HNO_{3} and $\mathrm{H}_{2} \mathrm{O}$
B) $\mathrm{H}_{3} \mathrm{O}$ and NO_{3}^{-}C) HNO_{3} and NO_{3}^{-}
D) $\mathrm{H}_{2} \mathrm{O}$ and NO_{3}
____14. A chemist wishing to estimate the pH of a $\mathrm{NH}_{2} / \mathrm{NH}_{i}$ buffer should use a pKa of approximately $\begin{array}{lllll}\text { A) } 3 & \text { B) } 5 & \text { C) } 7 & \text { D) } 9\end{array}$ (the $\mathrm{Kb}^{\text {of }} \mathrm{NH}_{3}$ is 1.8×10^{-5})

PROBLEMS I.

The base methyl amine, $\mathrm{CH}_{3} \mathrm{NH}_{2}$, has a Kb of 4.4×10^{-4}
A. Write the formula of the conjugate acid of $\mathrm{CH}_{2} \mathrm{NH}_{2}$
B. Write the chemical equation for the ionization of the base in water
C. 0.10 mole of $\mathrm{CH}_{3} \mathrm{NH}_{2}$ is dissolved in an aqueous solution with a volume of $200 . \mathrm{mL}$

Find the pH of this solution.
D. To the solution in part C we add 50.0 mL of 1.0 molar HCl . Find the pH of the resulting mixture
II. Acetic acid, Ka 1.8×10^{-5} is titrated with potassium hydroxide.
40.0 mL of 0.200 molar acetic acid is added to a flask. The KOH is 0.100 molar.
A. What is the pH of the solution before any base is added?
B. What is the pH after the addition of 40.0 mL of KOH ?
C. What is the pH after the addition of 80.0 mL of KOH ?
D. During the titration, a pH meter at one point reads a pH of 5.00 . At this point is $\left[\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right]$. greater than, less than or equal to $\left[\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right]$. Justify your answer.

