AP Chemistry. Test on Aqueous Equilibrium. Name_ NO CALCULATORS ON THIS PART OF THE EXAM! Questions 1 to 3 are based on the following 3 acids and their Ka's

HA , Ka = 1.0×10^{-6} HX Ka = 4.0×10^{-8} HZ Ka = 1.0×10^{-10}

- 1. The pH of a 1.0 molar solution of HA is A = 0 B 3 = C 6 = D 8
- 2. What is the [H⁺] in a solution containing 1.0 mole of HX and 2.0 mol of NaX in 500 mL of solution? A) 2.0 x 10⁻⁸ B) 4.0 x 10⁻⁸ C) 8.0 x 10⁻⁸ D) 1.0 x 10⁻⁸
 - 3. Which 0.100 molar solution would have the highest pH? A) NaA B) NaX C) KZ D) HZ
- 4. Which of the following anions has the **weakest** conjugate acid? A) O^{2-} B) OH^{-} C) CI^{-} D) HCO_{3}^{-}
- 5. In an aqueous solution with a pH of 10.50 at 25° the molar concentration of OH° is approximately A) 3.2 x 10⁻¹¹ M B) 3.2 x 10⁻⁴ M C) 0.25 M D) 3.2 x 10¹⁰ M
- Choices : A) A solution with a pH less than 7 that is not a buffer
 B) A solution with a pH less than 7 that is a buffer
 C) A solution with a pH of 7
 D) A solution with a pH greater than 7 that is not a buffer
 E) A solution with a pH greater than 7 that is a buffer.
- Note: The Ka of acetic acid is 1.8×10^{-3} , the Ka of HBrO is 2.5×10^{-9} , and the Ks of NH₈ is 1.8×10^{-3}
- ____6. 0.10 mole of NH_{a} is mixed with 0.10 mole of NH_{a} in 1.0 L of solution
- ____7. 0.10 mole of NaBrO is dissolved in 250 mL of solutioni
- ____8. 50.0 mL of 0.20 molar HBrO is mixed with 50.0 mL of 0.10 molar NaOH
- ____9. 0.50 mole of $NaC_{2}H_{2}O_{2}$ is dissolved in 250 mL of solution
- ____10. 50.0 mL of 0.50 M HCl is added to 100.0 mL of 0.50 M NaC₂H₃O₂
- ____11. 50.0 mL of 0.50 M HCl is added to 100 mL of 0.25 M KOH.
- 12. What is the [H¹] in an aqueous solution at 25° C that has an [OH¹] of
 2.0 x 10⁻³ ? A) 2.0 x 10⁻³ B) 5.0 x 10⁻⁹ C) 2.0 x 10⁻⁹ D) 5.0 x 10⁻¹⁰

- 13. In the Bronsted-Lowry reaction HNO₃(aq) + H₂O(ℓ) → H₃O^{*}(aq) + NO₃⁻ (aq) the strongest acid and strongest base respectively are
 A) HNO₃ and H₂O B) H₃O^{*} and NO₃⁻ C) HNO₃ and NO₃⁻
 D) H₂O and NO₃⁻
- _____14. A chemist wishing to estimate the pH of a NH₄/NH² buffer should use a pKa of approximately A) 3 B) 5 C) 7 D) 9 (the Kb of NH₃ is 1.8 x 10⁻⁵)

PROBLEMS I.

The base methyl amine, CH₃NH₂, has a Kb of 4.4 x 10⁻⁴

- A. Write the formula of the conjugate acid of CH₃NH₂
- B. Write the chemical equation for the ionization of the base in water
- C. 0.10 mole of CH₈NH₈ is dissolved in an aqueous solution with a volume of 200. mL Find the pH of this solution.
- D. To the solution in part C we add 50.0 mL of 1.0 molar HCl. Find the pH of the resulting mixture
- II. Acetic acid, Ka 1.8×10^{-5} is titrated with potassium hydroxide.

40.0 mL of 0.200 molar acetic acid is added to a flask. The KOH is 0.100 molar.

- A. What is the pH of the solution before any base is added?
- B. What is the pH after the addition of 40.0 mL of KOH ?
- C. What is the pH after the addition of 80.0 mL of KOH ?
- D. During the titration, a pH meter at one point reads a pH of 5.00. At this point is [HC₂H₃O₂]. greater than, less than or equal to [C₂H₃O₂⁻]. Justify your answer.