Exam

Name_____

MULT	TIPLE CHOICE. Choose	e the one alternativ	e that best complet	es the statement or a	nswers the quest	ion.		
	1) When the following equation is balanced, the coefficients are NH3 (g) + O2 (g) \rightarrow NO2 (g) + H2O (g)							
	A) 1, 3, 1, 2	B) 4, 7, 4, 6	C) 4, 3, 4, 3	D) 1, 1, 1, 1	E) 2, 3, 2, 3			
	2) When the following equation is balanced, the coefficient of Al is							
	Al (s) + H ₂							
	A) 3	B) 5	C) 4	D) 1	E) 2			
	3) When the following	equation is balance	d, the coefficient of	HNO3 is	_·	3)		
	HNO ₃ (aq) + CaCO ₃ (s) \rightarrow Ca(NO ₃) ₂ (aq) + CO ₂ (g) + H ₂ O (l)							
	A) 4	B) 1	C) 3	D) 5	E) 2			
	4) What is the coefficient of O ₂ when the following equation is completed and balanced? $C_4H_8O_2 + O_2 \rightarrow ___$							
	A) 3	B) 2	C) 5	D) 6	E) 1			
	5) There are hydrogen atoms in 25 molecules of C ₄ H ₄ S ₂ .							
	A) 1.5 × 1025							
	B) 3.8×1024							
	C) 6.0×10^{23} D) 100							
	E) 25							
	6) How many grams of hydrogen are in 46 g of CH_4O ?							
	A) 184	B) 5.8	C) 0.36	D) 2.8	E) 1.5			
	7) There are molecules of methane in 0.123 mol of methane (CH ₄).							
	A) 2.04×10^{-25}							
	B) 2.46 × 10 ^{−2}							
	C) 5 D) 0.615							
	E) 7.40 × 10 ²²							
	,							

8) A 22.5-g sample of a	ammonium carbona	ate contains	mol of ammoniu	ım ions.	8)	
A) 2.14	B) 0.468	C) 0.288	D) 0.234	E) 3.47	, <u> </u>	
9) What is the empirica	l formula of a com	pound that contains	s 27.0% S, 13.4% O, an	nd 59.6% Cl by	9)	
mass?	B) SOCIA	C) SOCI	D Solution			
A) 502CI	b) 50Cl2	C) 50Cl	D) <u>52</u> 0CI	E) CI3O4		
10) What is the empirica mass?	ll formula of a com	pound that contains	s 49.4% K, 20.3% S, at	nd 30.3% O by	10)	
A) KSO4	B) KSO ₂	C) K ₂ SO ₃	D) KSO3	E) K ₂ SO ₄		
11) A compound contain compound is 60.05 a	ns 40.0% C, 6.71% F mu. The molecular B) C2H4O2	H, and 53.29% O by formula of this con	mass. The molecular npound is D) CH2O	weight of the 	11)	
A) CHO_2	D) C21 402	C) C <u>2</u> 11304	<i>D)</i> CH <u>2</u> 0	L) C211204		
12) A compound that is composed of carbon, hydrogen, and oxygen contains 70.6% C, 5.9% H, and 23.5% O by mass. The molecular weight of the compound is 136 amu. What is the molecular formula?						
A) C4H4O	B) C ₈ H ₈ O ₂	C) C9H <u>12</u> O	D) C5H6O2	E) C8H4O		
13) A compound is composed of only C, H, and O. The combustion of a 0.519–g sample of the compound yields 1.24 g of CO ₂ and 0.255 g of H ₂ O. What is the empirical formula of the compound?						
A) C ₂ H ₆ O ₂	B) C ₂ H ₆ O ₅	C) C3H3O	D) CH ₃ O	E) C ₆ H ₆ O		
14) Combustion of a 0.94 produced 1.900 g of A) C4H ₁₀ O B) C2H ₅ O C) C4H ₁₀ O ₂ D) C4H ₁₁ O ₂ E) C2H ₅ O ₂	835–g sample of a c CO ₂ and 1.070 g of	ompound containin H2O. What is the o	ng only carbon, hydro empirical formula of	ogen, and oxygen the compound?	14)	
15) Calcium carbide (Ca	C ₂) reacts with wa	ter to produce acety	lene (C2H2):		15)	
$CaC_2(s) + 1$	$2H_2O(g) \rightarrow Ca(O)$	H)2 (s) + C2H2 (g)				
Production of 13 g o A) 4.5 B) 9.0 C) 4.8 × 10 ⁻² D) 18	f C ₂ H ₂ requires con	nsumption of	g of H2O.			
E) 4.8 × 102						

16) Magnesium and nitrogen react in a combination reaction to produce magnesium nitride:

16) _____

 $3 \text{ Mg} + \text{N}_2 \rightarrow \text{Mg}_3\text{N}_2$

In a particular experiment, a 9.27-g sample of N₂ reacts completely. The mass of Mg consumed is _____ ___ g. A) 13.9 B) 24.1 C) 8.04 D) 0.92 E) 16.1 17) The combustion of ammonia in the presence of excess oxygen yields NO₂ and H₂O: 17) _____ $4 \text{ NH}_3(g) + 7 \text{ O}_2(g) \rightarrow 4 \text{ NO}_2(g) + 6 \text{ H}_2\text{O}(g)$
 B
 28.8 g of ammonia consumes _____ g of oxygen.

 A) 54.1
 54.8
 C) 108
 C) 15.3
 A) 54.1 E) 94.7 18) Under appropriate conditions, nitrogen and hydrogen undergo a combination reaction to yield 18) ammonia: N₂ (g) + 3H₂ (g) \rightarrow 2NH₃ (g) A 7.1-g sample of N₂ requires ______ g of H₂ for complete reaction. C) 17.2 B) 0.51 D) 1.5 A) 1.2 E) 0.76 19) Automotive air bags inflate when sodium azide decomposes explosively to its constituent 19) elements: $2NaN_3(s) \rightarrow 2Na(s) + 3N_2(g)$ How many moles of N₂ are produced by the decomposition of 2.88 mol of sodium azide? A) 1.92 B) 1.44 C) 4.32 D) 0.960 E) 8.64 20) Magnesium burns in air with a dazzling brilliance to produce magnesium oxide: 20) $2Mg(s) + O_2(g) \rightarrow 2MgO(s)$ When 4.00 g of magnesium burns, the theoretical yield of magnesium oxide is ______ g. E) 3.32 A) 4.00 B) 13.3 C) 6.63 D) 0.165 21) Lithium and nitrogen react to produce lithium nitride: 21) $6\text{Li}(s) + \text{N}_2(g) \rightarrow 2\text{Li}_3\text{N}(s)$ How many moles of N2 are needed to react with 0.500 mol of lithium? A) 0.167 B) 0.0833 C) 1.50 D) 0.500 E) 3.00

22) Lithium and nitrogen react to produce lithium nitride:

 $6\text{Li}(s) + \text{N}_2(g) \rightarrow 2\text{Li}_3\text{N}(s)$

How many moles of lithium nitride are produced when 0.450 mol of lithium react in this fashion?

A) 1.35	B) 0.900	C) 0.150	D) 0.225	E) 0.0750
---------	----------	----------	----------	-----------

23) What mass in grams of hydrogen is produced by the reaction of 4.73 g of magnesium with 1.83 g 23) _____ of water?

Mg (s) + 2H₂O (l) \rightarrow Mg(OH)₂ (s) + H₂ (g)

- A) 0.0162 B) 0.219 C) 0.0485 D) 0.102 E) 0.204

 $Mg_3N_2 + 3H_2O \rightarrow 2NH_3 + 3MgO$

- A) 0.429 B) 0.0756 C) 0.0378 D) 4.57 E) 0.114
- 25) Pentacarbonyliron (Fe(CO)₅) reacts with phosphorous trifluoride (PF₃) and hydrogen, releasing 25) _____ carbon monoxide:

 $Fe(CO)_5 + PF_3 + H_2 \rightarrow Fe(CO)_2(PF_3)_2(H)_2 + CO (not balanced)$

 The reaction of 5.0 mol of Fe(CO)5, 8.0 mol of PF3 and 6.0 mol of H2 will release _____ mol of CO.
 mol of CO.

 A) 6.0
 B) 15
 C) 24
 D) 12
 E) 5.0

26) Sulfur and fluorine react in a combination reaction to produce sulfur hexafluoride: 26) _____

 $\begin{array}{rl} S(s) + 3F_2(g) & \rightarrow & SF_6(g) \\ \end{array}$ The maximum amount of SF₆ that can be produced from the reaction of 3.5 g of sulfur with 4.5 g of fluorine is ______ g. A) 16 B) 5.8 C) 3.2 D) 12 E) 8.0

27) Calcium oxide reacts with water in a combination reaction to produce calcium hydroxide: 27) _____

 $CaO(s) + H_2O(l) \rightarrow Ca(OH)_2(s)$

A 4.50–g sample of CaO is reacted with 4.34 g of H₂O. How many grams of water remains after completion of reaction?

A) 0.00892 B) 0.161 C) 1.04 D) 0.00 E) 2.90