Exam

Name_____

 A) 0.250 M B) 0.500 M C) 0.125 M D) 0.750 M E) essentially zero. A weak electrolyte exists predominantly as in solution. A) electrons B) molecules 	2)
 B) 0.500 M C) 0.125 M D) 0.750 M E) essentially zero. A weak electrolyte exists predominantly as in solution. A) electrons B) molecules 	2)
C) 0.125 M D) 0.750 M E) essentially zero. A weak electrolyte exists predominantly as in solution. A) electrons B) molecules	2)
D) 0.750 M E) essentially zero. A weak electrolyte exists predominantly as in solution. A) electrons B) molecules	2)
E) essentially zero. A weak electrolyte exists predominantly as in solution. A) electrons B) molecules	2)
A weak electrolyte exists predominantly as in solution. A) electrons B) molecules	2)
A) electrons B) molecules	
B) molecules	
,	
C) atoms	
D) ions	
E) an isotope	
Which of the following are strong electrolytes?	3)
ICI	
IC2H3O2	
VH3	
(Cl	
A) HCl, HC2H3O2, NH3, KCl	
B) HC2H3O2, KCl	
C) HCl, NH3, KCl	
D) HCl, HC2H3O2, KCl	
E) HCl, KCl	
Which of the following are weak electrolytes?	4)
-ICl	,
HC2H3O2	
VH3	
(CI	
A) HCl , HC2H3O2 , NH3 , KCl	
B) HCl , KCl	
C) HC2H3O2 , KCl	
D) HC2H3O2 , NH3	
E) HCl , HC ₂ H ₃ O ₂ , KCl	
When aqueous solutions of a gran mixed a procipitate forms	5)
A) NaL and KBr	5)
B) Li2CO3 and CsI	
C) K2SO4 and CrCl3	
D) KOH and Ba(NO3) 2	
F) NiBro and $\Delta \alpha NO2$	

6) The net ionic equation for the reaction between aqueous solutions of HF and KOH is

A) HF + KOH \rightarrow H₂O + K⁺ + F⁻ B) HF + K⁺ + OH⁻ \rightarrow H₂O + KF C) HF + OH⁻ \rightarrow H₂O + F⁻ D) H⁺ + F⁻ + K⁺ + OH⁻ \rightarrow H₂O + K⁺ + F⁻ E) H⁺ + OH⁻ \rightarrow H₂O

7) What are the spectator ions in the reaction between KOH (aq) and HNO₃ (aq)?

A) H⁺ and OH⁻
B) K⁺ and H⁺
C) OH⁻ only
D) H⁺ and NO₃⁻
E) K⁺ and NO₃⁻

8) The balanced net ionic equation for precipitation of CaCO₃ when aqueous solutions of Na₂CO₃
 8) ______.

6) _____

7) _____

A) $2Na^{+}(aq) + CO_{3}^{2-}(aq) \rightarrow Na_{2}CO_{3}(aq)$ B) $Ca^{2+}(aq) + CO_{3}^{2-}(aq) \rightarrow CaCO_{3}(s)$ C) $2Na^{+}(aq) + 2Cl^{-}(aq) \rightarrow 2NaCl(aq)$ D) $Na_{2}CO_{3}(aq) + CaCl_{2}(aq) \rightarrow 2NaCl(aq) + CaCO_{3}(s)$ E) $Na^{+}(aq) + Cl^{-}(aq) \rightarrow NaCl(aq)$

- 9) What is the concentration (M) of KCl in a solution made by mixing 25.0 mL of 0.100 M KCl with 9) ______ 50.0 mL of 0.100 M KCl? A) 0.0333 B) 0.0250 C) 125 D) 0.100 E) 0.0500
- 10) What is the concentration (M) of CH₃OH in a solution prepared by dissolving 11.7 g of CH₃OH 10) ______ in sufficient water to give exactly 230 mL of solution?

A) 11.9 × 10⁻³ B) 11.9 C) 0.0841 D) 1.59 E) 1.59 × 10⁻³

11) How many grams of NaOH (MW = 40.0) are there in 500.0 mL of a 0.175 M NaOH solution? 11)

A) 114

B) 2.19 × 10⁻³
C) 14.0
D) 3.50
E) 3.50 × 103

12) There are	mol of bromide ions in 0.500 L of a 0.300 M solution of AlBr3.				
A) 0.500	B) 0.0500	C) 0.450	D) 0.167	E) 0.150	

13) How many moles of (Co ²⁺ are present in 0	0.200 L of a 0.400 M s	solution of CoI ₂ ?		13)
A) 0.0400	B) 2.00	C) 0.0800	D) 0.160	E) 0.500	
14) How many moles of I	K ⁺ are present in 343	mL of a 1.27 M solu	tion of K3PO4?		14)
A) 0.145	B) 1.31	C) 0.436	D) 11.1	E) 3.70	
15) Calculate the concent	ration (M) of sodium	tions in a solution n house of 250.0 mJ	nade by diluting 50.0) mL of a 0.874	15)
A) 0.350	B) 0.175	C) 4.37	D) 0.525	E) 0.874	
	_,	-,	_,	_,	
16) The concentration (M diluted to 0 800 L is) of an aqueous meth	nanol produced whe	en 0.200 L of a 2.00 M	l solution was	16)
A) 0.400	B) 0.200	C) 0.800	D) 0.500	E) 8.00	
17) How many grams of s	sodium chloride are	there in 55.0 mL of a	a 1.90 M aqueous sol	ution of	17)
sodium chloride?					
A) 12.2 B) 0 105					
C) 6.11 x 103					
D) 6.11					
E) 3.21					
18) Which solution contai	ins the largest numb	er of moles of chlori	de ions?		18)
A) 10.0 mL of 0.50	0M BaCl ₂				
B) 4.00 mL of 1.00	0M NaCl				
C) $30.00 \text{ mL of } 0.10$	0000 CaCl ₂				
D) 7.50 mL of 0.500 E 25.00 mL of 0.400 E	UM FECI3				
E) 25.00 mL of 0.4	UUVI KCI				
19) The molarity of a solu	ition prepared by dil	luting 43.72 mL of 5.	005 M aqueous K2C	r2O7 to 500.	19)
mL is	I I I I I I I I I I I I I I I I I I I	0	1 2	2-7	
A) 0.870	B) 57.2	C) 0.438	D) 0.0044	E) 0.0879	
20) In a titration of 35.00	mL of 0.737 M H ₂ SC	04, mL of	f a 0.827 M KOH solı	ution is	20)
required for neutraliz	ation.	C) (2.4	D) 20 2	E(1.10)	
A) 25.8	B) 35.0	C) 62.4	D) 39.3	E) 1.12	
21) Oxalic acid is a diprot	tic acid Calculate th	e percent of oxalic a	cid (H2C2O4) in a so	olid given that	21)
a 0.7984 g sample of t	hat solid required 37	7.98 mL of 0.2283 M	NaOH for neutraliza	tion.	
A) 22.83	B) 1.086	C) 97.78	D) 28.59	E) 48.89	
22) A 25.5 mL aliquot of I	HCl (aq) of unknown	n concentration was	titrated with 0.113 N	1 NaOH (aq).	22)
It took 51.2 mL of the	base to reach the end	dpoint of the titratio	n. The concentration	n (M) of the	
acid was	R) 1 02	C = 0.114	D) 0.454	E) 0 227	
A) 0.113	D) 1.02	C) 0.114	D) 0.454	E) 0.227	

23) A 31.5 mL aliquot of H ₂ SO ₄ (aq) of unknown concentration was titrated with 0.0134 M NaOH (aq). It took 23.9 mL of the base to reach the endpoint of the titration. The concentration (M) of					23)
the acid was A) 0.227	 B) 0.00508	C) 0.0102	D) 0.102	E) 0.0204	
24) What mass (g) of CaF ₂ is formed when 47.8 mL of 0.334 M NaF is treated with an excess of					24)
A) 2.49	B) 1.25	C) 0.623	D) 0.943	E) 0.472	
25) What volume (L) of 0.2 17.5 g of NaOH in 350 n A) 50.0 B) 1.75 × 10 ^{−3} C) 1.75 D) 0.070 E) 0.44	50 M HNO3 is requ mL of water?	ired to neutralize a	solution prepared by	v dissolving	25)
26) A solution is prepared the molarity of chloride A) 0.183	by mixing 50.0 mL e e ion in this solutior B) 0.117	of 0.100 M HCl and n? C) 8.57	10.0 mL of 0.200 M M D) 3.50	NaCl. What is E) 0.0500	26)
27) Lead ions can be precipitated from aqueous solutions by the addition of aqueous iodide:					27)
$Pb^{2+}(aq) + 2I^{-}(aq) \rightarrow PbI_{2}(s)$					
Lead iodide is virtually many milliliters of 3.55 Pb(NO3) ₂ (aq) to comp A) 197 B) 0.394 C) 0.197 D) 394 E) 2.54 × 10 ⁻³	v insoluble in water 50 M HI(aq) must be letely precipitate th	so that the reaction added to a solutior e lead?	appears to go to com a containing 0.700 m	npletion. How ol of	
28) How many milliliters o NaOH? A) 0.0335	of 0.132 M HClO ₄ so B) 0.0120	olution are needed to C) 0.521	o neutralize 50.00 mI D) 29.9	L of 0.0789 M E) 83.7	28)